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Abstract. The damping or the lifetime of long-wavelength spin waves in itinerant electron 
ferromagnets is evaluated with the Hubbard Hamiltonian. The spin-wave pole is derived by 
using the diagrams for the irreducible susceptibility given by Ma et al. It is shown that even 
for weak ferromagnets the damping due to the scattering process of the spin wave is 
important, especially at low temperatures, in contrast to previous expectations from the 
results for the nearly ferromagnetic case under an external field. Perfect ferromagnets are 
also considered. The spin wave in weak ferromagnets is more strongly damped than that in 
the perfect ones by order of t-4, where Cis the relative magnetisation. 

1. Introduction 

Many studies on spin waves in itinerant electron ferromagnets have been performed 
theoretically and experimentally. Of major interest has been the spin-wave energy. On 
the other hand, the damping, which is inversely proportional to the lifetime, of spin 
waves has been investigated by only a few groups. The reason seems to be a lack of 
experimental data due to the difficulty of neutron scattering experiments for the spin- 
wave damping. 

Experimentally, as far as the author is aware, only one such study was presented for 
Fe and Ni (Stringfellow 1968) up to 1980, except for typical Heisenberg ferromagnets, 
and he concluded that the results are consistent with the theoretical results for the 
magnon-magnon interaction in the Heisenberg model. However, recent investigations 
for invar alloys (Onodera et a1 1981) have proposed very strong damping remarkably 
different from Fe and Ni. 

On the other hand, theoretical investigations for the spin-wave damping in itinerant 
electron ferromagnets have been performed for two mechanisms: electron-phonon 
(Yamada 1976) and electron correlation, briefly reviewed below. However, the previous 
theories based on both mechanisms did not derive the strong damping detected in invar 
alloys. It is still unknown whether the origin of this strong damping is due to invar 
characteristics or to general electronic properties. Therefore, with the expectation of 
experiments in various itinerant ferromagnets in future, the development of the electron 
correlation theory for spin-wave damping seems to be meaningful. 

Up to now, only three theoretical investigations on these lines have been performed. 
The first is by Thompson (1965), who calculated the intrinsic (temperature-independent) 
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lifetime by the second-order perturbation calculation. The other two used the dia- 
grammatic perturbation method and derived the temperature dependence of the damp- 
ing. One of them is by Ma et a1 (1968) for 3He under an external magnetic field, and the 
other is by Gergis (1972) for perfect ferromagnets. The former only takes into account 
the decay process of the spin wave to the paramagnons, i.e. the final states of the spin 
wave are treated as the paramagnetic state without the external field. Therefore this 
theory may be appropriate for the nearly ferromagnetic case under an external magnetic 
field where the spin-wave dispersion has a gap, though it seems to be doubtful whether 
the theory is applicable to weak ferromagnets, in contrast to the expectation of Edwards 
and Fisher (1971). The reason is that because of the absence of a gap in the weakly 
ferromagnetic case without an external field, it is expected to be important for the 
scattering process of the referred spin wave into the spin wave and the longitudinal 
fluctuations, especially at low temperature. 

Thus it is now necessary to investigate real weak ferromagnets to understand the 
spin-wave damping in comparison with perfect ferromagnets. Then the present purpose 
is to investigate the damping of the spin wave with long wavelength in both limits of 
perfect and weak ferromagnets, with special interest in its temperature dependence. 

In the next section, the expression of the transverse dynamical susceptibility is 
derived and in section 3 a general expression of the spin-wave damping within the scope 
of the approximation in section 2 is given. The spin-wave damping is calculated for the 
limits of weak and perfect ferromagnets in sections 4 and 5 ,  respectively. The last section 
is devoted to the conclusions and a discussion. 

2. Transverse dynamical susceptibility 

We start from the Hubbard Hamiltonian with an intra-atomic Coulomb interaction I ,  

E k o  = & k  - OB 

where a k u ( a ; t a )  is an annihilation (creation) operator of an electron with wavevector k 
and spin U. The one-electron energy and the exchange field are denoted by &k and B ,  
respectively. The transverse dynamical susceptibility is given by the following standard 
formula: 

with 

where Q = (Q, Q,) is a four-component vector, Q the wavevector, Q ,  = 2mniT (m = 
integer), T, the imaginary time ordering operator and the temperature Tis  expressed 
in energy units. 
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Figure 1. Diagrammatic equation of the trans- 
verse dynamical susceptibility and of the irre- 
ducible one. T and L' mean taking a bare 
interaction in addition to the corresponding spin 
fluctuation propagators. 

Now we introduce the irreducible susceptibility f - + ( Q )  defined by sets of bubble 
diagrams each of which cannot be separated into two pieces, each having an external 
vertex, by removing an interaction vertex. Then the dynamical susceptibility is given by 

x - + < Q >  = X-'<Q>/[ l -  G - + < Q > l  (2.4) 
and is shown diagrammatically in figure 1. 

For the irreducible diagrams various choices are possible under the condition of total 
spin conservation of the Hamiltonian. Ma et a1 (1968), Hertz (1971) and Kawabata 
(1974) approximated the irreducible susceptibilities by a set of bubble diagrams including 
a finite number of internal spin fluctuation propagators. On the other hand, Moriya 
(1976) used the self-consistent expression having infinite number of spin fluctuation 
propagators in the irreducible diagrams for the purpose of discussing the persistence of 
spin waves above the Curie temperature. 

In the present problem of describing the damping of a long-wavelength spin wave, 
the former approximation seems to be sufficient. The expression for the irreducible 
transverse susceptibility is given diagrammatically in figure 1. Here the internal spin 
fluctuation propagators are approximated by the random-phase approximation (RPA) 
and a full line corresponds to the one-electron Green function, 

G u ( ~ )  = (kO - &ku + PI-' (2.5) 
where p is the chemical potential, ko = (2m + 1)niT (m = integer). On the present 
choice of the irreducible susceptibility, only the most simple interaction processes are 
taken into account, where the referred spin wave is transferred into two modes, one 
transverse and the other longitudinal, because the many fluctuation processes seem 
to be less important at the temperature concerned. Six bubble diagrams within the 
irreducible susceptibility in figure 1 are denoted by Ai(Q), i = 1, . . . , 6 ,  in order and are 
expressed as follows: 

X-' ( Q )  = AI ( Q )  + SX-' (Q)  

Ai(Q> = xO' ( Q )  = - T Z  G t (k)G 1 ( k  + Q) 

6 

SX-'(Q> = Z Ai<Q> 
i = 2  

k 
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P(Q> = x+-(-Q> 
xo(Q> = xo<-Q> 
x X Q )  = xL<-Q>. 

2 - + ( 4 )  = xo+(4) / [1  - G5+(4)1 

lids) = x o u ( 4 ) / [ 1  - ~ 2 x o o ( 4 > x o - o ( 4 ) l  

2x41  = -~xou(4)xo-o(4)/~~ - ~ 2 x o u ( 4 ~ x o - o ( 4 ) 1  

The internal RPA spin fluctuation propagators are given by 

(2.10) 

where xo(q) are the non-interacting susceptibilities and are expressed in appendix 1. 

3. Spin-wave damping 

Now we may obtain the spin-wave energy and the damping from the real and imaginary 
parts, respectively, of the pole of the transverse dynamical susceptibility in equation 
(2.4). Therefore the equation to be solved is 

1 - Zx-'(Q) = 0 (3.1) 
and the damping is then proportional to the imaginary part of x - + ( Q ) .  
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Before performing the practical calculation of equation (2.6), the most simple 
approximation is noticed. That is the RPA theory for x - + ( Q ) ,  which corresponds to 
approximating the irreducible susceptibility only by the first bubble, AI@). In this 
approximation the spin wave naturally does not damp and is well defined in the vanishing 
region of the imaginary part of non-interacting transverse susceptibility xi+ (Q)  (see 
figure 2 in appendix 1) at absolute zero temperature. 

In the present approximation, the imaginary parts of the irreducible susceptibility 
for the long-wavelength modes come from the last five bubble diagrams, i.e. Ai ( i  = 
2 , .  . . , 6 ) .  The first terms within A2 and A3 contribute to the shift of the chemical 
potential; therefore, those terms are absorbed in p .  Then we redefine A2 and A3 
by respective second terms. Thus redefined SX-'(Q) vanishes in the limit of long 
wavelength, i.e. Q + 0, as the requirement of total spin conservation (Ma et a1 1968). 
Therefore SX-'(Q) is expanded by Q to second order. After performing the summation 
on qo and then replacing Qo by S2 + is (s = positive infinitesimal), the shift of the spin- 
wave energy, or the correction for the spin-wave stiffness constant, and the damping 
may be calculated from the real and imaginary parts of S X - ' ( Q ,  S2 + is), respectively. 
However, since our present interest is in the damping, only the imaginary part is 
calculated. 

Then the results are expressed by the use of the electron-gas model and of the reduced 
quantities, the wavevector and the energy normalised by the Fermi vector kF and the 
Fermi energy 

Im[ISX-+(Q, Q)1= v i  + v2 + ~3 

in the paramagnetic state, respectively, as follows: 

4Q2a2 v 1 = 7 1 d o N(o, S2) lC d q  q2 Im F [Im J 2  (-4, S2 - U )    EO 
+ ImJ,(-q, S2 - U ) ]  

v 2 = - -  4Q2a3  I d w N ( o , S 2 ) / o q c d q $  
37& 

X [Re L Im foo(r ,J- ,  - oar,q, - ar-,i-, Refo-,) 

with 

~ ( o ,  Q) = sgn(o)[i + n(1o1)] - sgn(w - Q)[h + n(lw - Ql)] 

T = (1 - afo+)-l L = (I - a*foT f o r  )-1 
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go = Q - 2B 

and the .Ti are expressed as 

ImJl(q,  o) = -{- i (k\  - P\)O(kT - IP, I )  1 

141 

+ [$(k4~ - PI ) + i(2B - o)(k*J - P i  )]8(k j - I P 1 I ) }  

+ [ -  $(k4T - P:) +4(2B - o)(k\  - IP, 12)]O(kT - ( P ,  I ) }  
1 

1m14(-q, n - U) = -{(t(k\ - P I ) e ( k ,  - I P ,  I )  
141 

+ [ - i ( k \  - P 4 ? ) + + ( S 2 - ~ ) ( k 2 T  -P?)]O(k, - IPT I ) } .  
Here n( 1 o I )  denotes the Bose function, a = Z ~ ( E ~ ) ,  P ( E ~ )  the density of states at the 
Fermi energy in the non-interacting system, fi' andf,, the reduced quantities of Xi' 
and xo, by P ( E ~ )  respectively, AR and AI the real and imaginary parts of productfotfo 
respectively, 

k ,  = (1 + a[)1/3 

and qc the cut-off momentum in the present electron-gas model. The relative mag- 
netisation [ is defined as [ = M,", M the magnetisation and N the total number of 
electrons. Then the exchange field B is related to k ,  as 

2B = k2T - k i .  

Henceforth the arguments of fi' and feu, if they are omitted, are ( q , o )  and 
(-q, Q - o), respectively, and the temperature dependence of the Fermi function 
involved in the non-interacting susceptibilities is now neglected. 

It is considered that the contributions in equation (3.2) are divided into two parts: 
the scattering processes and the decay processes of the spin wave. The former involves 
the spin wave and the latter the dissipative spin fluctuation as the transverse excitations 
in the final state. 
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The above expression is general for the long-wavelength spin wave within the present 
approximations; therefore, the spin-wave damping may be obtained as the function of 
Q and T for any value of f. However, we only consider the two simple limits of weak 
and perfect ferromagnets in the following two sections. Hereafter we neglect the zero- 
point contribution, which comes from the T-independent terms within N ( w ,  5 2 )  in 
equation (3.3), and approximate Eo by 2B. 

4. Weakly ferromagnetic case 

First we consider the weakly ferromagnetic limit in this section. In this limit 5 1; 
therefore, the predominant region in q and w space for the transverse excitation is for 
the dissipative spin fluctuation modes not for the spin waves, as is seen from figure 2 in 
appendix 1. The modes with small q and w are strongly exchange-enhanced; therefore, 
the scattering process is also expected to give the dominant contribution for the damping 
especially in the low-temperature region. 

The three q given in equation (3.2) are calculated by the use off ;+, fog and Im .Ti (i = 
1 , . . . ,4) given in appendices 1 and2, where eachimaginary part of these is approximated 
by each value in the region I11 in equations (A1.12), (A1.15) and (A2.1)-(A2.4). Then 
the values of q are expressed as 

4c q 2  
+ Cw(w - Q )  j 41  d q A 2 q 6  + C 2 w 2 ]  

(4.1) 
27a3(1 + a)2CQ2 q 2  d o  N ( w ,  Q)w(o - 52) 1" d q  

g ( q ,  Q - 4 1  
64c4 r2 = - 

81a2AQ2 i d w  N ( w ,  Q) 
q3  64nc4 

4 c  (1 - a ) A C 2 q s ~ ( ~  - Q )  
dq  (A2q6 + C2w2)g(q,  Q - w )  

x 6 [ q  - (?y2] - I 
41 

where 

g(q, Q - W) = (A + 2a2Aq2)! q 2  + 4a4C2(Q - o ) ~  

A = 1 - a2 + (G + F 2 ) a 2 c 2  (4.2) 

and A has a positive value for f at low temperature, as is shown from the Hartree-Fock 
equilibrium condition at T = 0 for a 5 1, 8(0) the step function. The two cut-off 
frequencies involved in the contribution from the spin wave (i.e. 0 s q s q l ) ,  wc and 
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wD, are respectively upper and lower ones, and their expressions are given in appendix 
3. The former comes from the crossing of the spin-wave dispersion with the Stoner 
boundary q ,  and the latter from the crossing with the lower boundary for the imaginary 
parts of foe, J2 and J4, which is -ql where q1 and q1 are defined in appendix 1. The 
coefficients A ,  C, F and G are calculated from the band structure and are given in 
appendix 1 for the electron-gas model. 

Equation (4.1) is evaluated for the contributions from the scattering process and 
from the decay process separately. The former contribution comes from the first terms 
in q1 and r ] ,  and is evaluated for the three temperature regions. Retaining the most 
dominant contribution in each r ] ,  the final results are given as follows: 

(i) COD b T 

Slnay ,  243a2 ACy, Q 2  T2 
32c2 S2 

[ZIm SX-+],w = - Q ~ T ~  + 
16c4 (4.3) 

(ii) Q S T S C O ~  

[IIm6f-+], ,  e8$f2 (y lT2 - QTln- + 243a2 AC Q2T2 ””) T 325‘’ S2 
(4 9 4) 

(iii) wc + T b S2 

where 

Y n  = lom dx hn (XI. 

In these three expressions the first terms come from q l  and the second ones from 7,. 
Here we should give a comment on the logarithmic terms, which involve the cut- 

off frequency, wD. This cut-off frequency has its definite meaning at absolute zero 
temperature; therefore, if we take into account the temperature dependence of the Fermi 
function in the non-interacting susceptibilities, these terms are expected to disappear and 
to be supplanted by terms of the same order as or higher than the term that is independent 
of wD, through the smearing of the cut-off boundary. Furthermore if we consider the 
higher-temperature case, i.e. T + wc, the effect of the smearing in not only wD but wc 
becomes important. Then the case is not considered here, but the dominant contribution 
is expected to be similar to (iii). 

After ignoring the logarithmic terms, we compare the predominance of two terms in 
each temperature region. In both equations (4.3) and (4.4), the second terms are 
different from the first ones by order of c4/S2, because A is proportional to cz. Therefore 
the dominant contribution comes from the first and second terms for c4/Q 4 1 and c4/ 
S2 % 1, respectively. On the other hand, in equation (4.5) the second term is smaller 
than the first by a factor T/c2 (GT/wc 4 l ) ,  because wc is proportional to c3 (see 
appendix 3). 

We next consider the contributions from the decay process in equation (4.1). By 
replacing the lower bound of q-integrals by Q, = ql(w = 0), which is proportional to e, 
those contributions are given in the two limiting cases as follows: 
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(4.6) 

with 

(ii) T % Q: 

In these expressions the two terms in the parentheses come from q 1  and q 2  in order. 
The contributions from q3 are smaller than those by order of c4, so are neglected in both 
cases. The present result, equation (4.6), in the low-temperature limit agrees with 
the result of Ma et a1 (1968) (see equation (4.6) in their paper) on the Q,  52 and T 
dependences. 

Finally in this section we notice the importance of the scattering process in com- 
parison with the decay process. In the low-temperature limit, comparing equation (4.6) 
and the first term of equation (4.3), the contribution from the decay process is smaller 
than that from the scattering process by order of S 2 / C 3  (el). Even in the high-tem- 
perature limit the leading contributions of equations (4.5) and (4.7) have the same 
dependence of i;-4Q2QT, though the latter is greater by order of ln(q,/Q,). Therefore 
the scattering process gives a significant contribution to the damping of the spin wave 
even in weak ferromagnets, not only at low temperature but also at high temperature. 
This is significantly different from the nearly ferromagnetic case under an external 
magnetic field (Ma et a1 1968, Edwards and Fisher 1971). 

5. Perfect ferromagnetic case 

For the perfect ferromagnetic case, we put c = 1 (i.e. k ,  = 2lI3 and k i  = 0); then 
xOs (4, w )  orfol  (4, w )  vanishes. Furthermore, for T(q,  U ) ,  the dominant contribution 
is expected to be that from the spin-wave region in q- and w-space because of the relative 
reduction of Stoner region in small q and w region (see figure 2 in appendix 1) as long 
as Q and Q are not too large. Then we only consider the contribution from the scattering 
process. 

Then the three r of equation (3.2) are simplified as 

X Imfot {2 (q2  + w - Q)[-$k3? + (q2  + k$ - w )  Refi'] 

+ a[ -$k\ + (q2 + k2? - w )  Ref;'I2}. (5.1) 
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These expressions are evaluated by the use of the expansion forms for f i + ( q ,  o) and 
f o r  ( 4 ,  o) given in appendix 1 and of Im J4 for the region I11 in equation (A2.4). Now we 
obtain the final results in three temperature limits as follows: 

(i) (OD 9 T 

(ii) Q 9 T 9 wD 

(5.3) 

(iii) oc 9 T 9 Q 

2aoyl +-ln- ""1 (5.4) 
T T  

where 

= 6  + 4 ak t 

and the cut-off frequencies wc and 
In these expressions the first and second terms come from q l  and q3 ,  respectively. 

As is noted in the previous section, the logarithmic terms are ignored below. In contrast 
to the weakly ferromagnetic case q3 gives higher-order contributions than q l  in all 
temperature regions. 

Thus we obtain the dependence of Q 2 T 2  for 52 9 T and of Q2QT for T 9 Q, which 
are consistent with the results of Gergis (1972). 

are given in appendix 3. 

6. Conclusions and discussion 

The damping of the spin wave in itinerant electron ferromagnets has been calculated for 
both limits of weak and perfect ferromagnets. 

Even in weak ferromagnets, it is shown that the scattering process of the spin wave 
with the longitudinal fluctuation gives a dominant contribution to the damping over the 
decay process especially at low temperature. 

Q and 
Q2T2/Q for c4 %- Q at low temperature and proportional to Q 2 Q T / f 4  at high tempera- 
ture. On the other hand the decay process gives damping proportional to Q2QT2/c7  at 
low temperature and proportional to ( Q 2 Q T / f 4 )  In ( q c / Q c )  at high temperature. In 
comparison between these two processes, it is concluded that the scattering process is 
predominant over the decay process by order of f 3 / Q  (9 1) for f4  Q and f 7 / Q 2  for 
f4 9 Q at low temperature. At high temperature both processes have the same Q 2 Q T /  
f 4  dependence, though the latter process is greater than the former by the factor of 

This ratio between the two processes seems to be reasonable from a physical point 
of view. At low temperature, as the energy of the referred spin wave Q becomes small 

The scattering process yields damping proportional to Q 2 T 2 / f 4  for f 4  

W q c  /ec>. 
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relative to oc ( K  c3), the scattering process becomes more important because spin waves 
with long wavelength and low energy are mainly excited. On the other hand, at high 
temperature the dominant process depends on the ratio of the allowed region for 
the spin wave to that for the transverse dissipative fluctuation, that is qc/Qc, in the 
wavevector space. 

The paramagnon theory by Ma et a1 (1968) gives a term proportional to Q2QTT2, 
which corresponds to the result at low temperature from the decay process. In their 
situation under a magnetic field, the spin-wave dispersion has a gap proportional to the 
external magnetic field, leading to the restriction of the scattering process. However, in 
real weak ferromagnets, the spin wave with sufficiently low energy may be enhanced; 
therefore the scattering process gives the dominant contribution, as is shown above, 
contrary to the expectation by Edwards and Fisher (1971). 

For perfect ferromagnets, only the scattering process, which is expected to be 
predominant, has been calculated. In this case the damping is proportional to Q2T2 at 
low temperature and to Q2RTat  high temperature. This dependence is the same as the 
results by Gergis (1972) if we adopt the relation SZ CC Q2 from the spin-wave dispersion. 

In comparison of weak and perfect ferromagnets for the scattering process, it is 
shown that the damping in weak ferromagnets is greater than in perfect ones by order 
of 9-4 at any temperature. 

The intrinsic damping proportional to Q6 proposed by Thompson (1965) is not 
derived in the present theory. This temperature-independent contribution is expected 
to occur if the zero-point contributions are taken into account. 

Next we discuss the effect of electron-electron scattering, which brings the self- 
energy into the one-particle Green function in equation (2.5) and leads to the damping 
of the spin wave. For the sake of taking this effect into account in a simple manner, the 
t-matrix for the interaction between the same two species of particles each with opposite 
spin should be considered. However, the particle-particle t-matrix only gives a weak 
temperature dependence due to a Fermi function different from the electron-hole t- 
matrix. Therefore, this effect should be important only at sufficiently low temperature. 
The theory including this effect should be developed in future. 

Finally, the present results are restricted for the limits of weak and perfect ferro- 
magnets, but in future the intermediate case should be investigated and then comparison 
with the experimental results will be possible. 
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Appendix 1. Non-interacting susceptibilities 

The non-interacting susceptibilities under the exchange field B are given by 

where z = o + k (s =positive infinitesimal) and f k o  is the Fermi function. The 
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expressions for the electron-gas model at absolute zero temperature have already been 
given (Moriya and Kawabata 1973, Gumbs and Griffin 1976); therefore we only give 
the results. Using the reduced units given in the text and the electron-gas model, by 
neglecting the temperature dependence of the Fermi function we obtain 

where 

and 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

where 

= k ,  3 ( k i  - o ) ~ ’ ~ .  (A1.7) 
q30 “3 “‘j= k ,  (k: + 

q 4 0  

Therefore both&+ (4 ,  w )  and to&, w )  have non-vanishing values of ;hose imagin- 
ary parts in limited regions in (4 ,  U)-space. Those regions are illustrated in figures A1 
and A2 for fi+(q, w )  and foO(-q, Q - w )  respectively, where the argument of fo, is 
modified for convenience in the text. 

Next we give the expansion forms of equations (A1.2) and (A1.5) for small 4 and w 
and the explicit expressions of equations (Al.3) and (Al.6). 
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Figure A l .  Non-vanishing regions for the imagin- Figure A2. Non-vanishing regions for the imagin- 
ary pait of the non-interacting transverse sus- ary part of the non-interacting longitudinal sus- 
ceptibility, fi'(q, U), at T = 0. Each boundary ceptibility, fo,,(-q, Q - w ) ,  at T =  0. Each 
line is given in equation (A1.4). boundary line is given in equation (A1.7). 

(i) f i '  . For the real part of fi' , we consider the spin-wave region (q  s q l )  and the 
dissipative spin fluctuation region (q  3 q l )  separately. First, for q 6 q1 we expand 
equation (A1.2) for small q2/2B and w/2B; then we obtain 

In this formula, B and k,  are expanded by small 5' for weak ferromagnets and we put 
k J = 0 for perfect ferromagnets. Then 

3 
Refi+(q,  w )  = 1 - & E t 2  + - w - Aq2 

2 
Refi+(q,  w )  = - (k? + w - i s 2 )  

(weak FM) (A1.9) 

(perfect FM). (Al.  10) 

Next for q > q1 only weak ferromagnets are considered and equation (A1.2) is 

4c 

3k T 

expanded as 

S 
Ref;'(q, w )  = 1 - Aq2 + D- 5'- 4 Ec2 (weak FM) (Al . l l )  

4 
The imaginary part has finite value for q > q1 and is given for the corresponding 

regions in figure A1 as follows: 

(C/4q3)[4q2k? - (CO - q2 - 2 B ) 2 ]  (for I) 

Imf i+(q ,  w )  = -(C/4q3)[4q2k\ - (w + q2 - 2B)2]  (for 11) (Al.  12) -Lq (for 111). 

(ii) fo,. Here we give the expression for fo,( -4, 52 - 0). The real part is expanded 
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in the same way as f;’ for q > q1 for weak ferromagnets and by small q / k  
w/qk for perfect ferromagnets. The results are given as 

and 

The imaginary part offou is given from equation (A1.6) for each region I, I1 and I11 
in figure A2 as below. For the weak ferromagnets with a = t or & and for perfect 
ferromagnets with a = t , 

-(c/4q3)[4q”: - (52 - O + q2)2] 

(C/4q3)[4q2k: - (U - 52 + Imfou(-q, 52 - 0) 
L 

and for perfect ferromagnets with a = 4 this quantity vanishes. 
The coefficients used above are 

(for I) 

(for 11) (Al .  15) 

(for 111) 

for the electron-gas model. 

Appendix 2. Imaginary parts of J 1 ,  Jz , J3 and J4 

The explicit expression of the imaginary parts of the Ji in equation (3.4) is given in this 
appendix. The non-vanishing regions of the imaginary parts of J1 andJ3 are the same as 
those off;+ illustrated in figure Al .  In the respective regions I, I1 and 111 in the figure, 
those are given by 

- k l  - 20 + (, 

- - (2k2, - w) 

(for I) 

(for 11) 

(for 111) 

(A2.1) 
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j $ ( i k t  + W) (for 111). 

( A 2 . 2 )  

The non-vanishing regions of ImJ2(-q, Q - w )  are the same as those of 
fo l  (-q, Q - w )  and the values are given by 

__ 1 ikn - (Q - 0 + q 2 i 4 1  
4q 2q (for I) 

2(Q - 0) + k2j + (* - rq- q2) '1 (for 11) I ImJ2(-q, Q - w )  = 

[ 7 ( 2 k \  + Q - U )  
(for 111) 

(A2 .3 )  

for the three regions in figure A 2 .  Similarly the non-vanishing regions of 
Im J4( -4, C2 - w) correspond with Imfo (-4, Q - w )  and are expressed as 

1 -$ [k\ - (" - ;)+ 42)2] 

(2k\ - Q + w )  

Appendix 3. RPA spin wave and cut-off energies 

(for 111). 

( A 2 . 4 )  

First we derive a spin-wave dispersion in RPA within the electron-gas model. This is 
derived from the pole of x-+(q, U) defined in equation (2.10) in the vanishing region of 
Im %of, that is 



3594 M Isoda 

1 - ZReXo+(q, w )  = 0. (A3.1) 

With the use of the value at q = 0 and w = 0, this equation is rewritten as 

f ; + ( O ,  0) - Ref{+(q, U )  = 0 (A3.2) 

and is expressed for the long-wavelength spin wave as 

w = D,,q2 

(A3.3) 

by using equation (A1.8). The spin-wave stiffness constant D,, is rewritten by using 
equations (A1.9) and (A1.lO) as 

(weak FM) 
(A3.4) 

Next we calculate the upper cut-off frequency uc , which is given by the intersection 
of the spin-wave dispersion and the Stoner boundary q l .  Therefore by solving equations 
(A3.3), (A3.4) and q1 in equation (A1.4), we obtain 

c' (perfect FM). 
D,, = 

k c3 (weak FM) 

-- {k\ (3 - d 5 ) / 8  (perfect FM), 
( A 3 3  

Lastly, the lower cut-off frequency wD is defined by the intersection of the spin-wave 
dispersion and -ijl0(S2 - w )  given in equation (A1.7) and figure A2. Therefore wD 
is spin-dependent. However, in the lowest-order term for small 5 and S2 in weak 
ferromagnets, it has no spin dependence and is given by 

hl;Q2 (weak FM) 

wD zT {(l/20 k2, )Q2 (perfect FM). 
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